Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Field-resolved measurements of few-cycle laser waveforms allow access to ultrafast electron dynamics in light–matter interactions and are key to future lightwave electronics. Recently, sub-cycle gating based on nonlinear excitation in active pixel sensors has allowed the first single-shot measurements of mid-infrared optical fields. Extending the techniques to shorter wavelengths, however, is not feasible using silicon-based detectors with bandgaps in the near-infrared. Here, we demonstrate an all-optical sampling technique for near-infrared laser fields, wherein an intense fundamental field generates a sub-cycle gate through nonlinear excitation of a wide-bandgap crystal, in this case, ZnO, which can sample the electric field of a weak perturbing pulse. By using a crossed-beam geometry, the temporal evolution of the perturbing field is mapped onto a transverse spatial axis of the nonlinear medium, and the waveform is captured in a single measurement of the spatially resolved fluorescence emission from the crystal. The technique is demonstrated through field-resolved measurements of the field reshaping during nonlinear propagation in the ZnO detection crystal.more » « less
-
High harmonic generation (HHG) in solids has been identified as a promising mechanism for light source generation and for spectroscopy of materials. HHG from bulk solids, however, often suffers from nonlinear propagation effects, resulting in a loss of spectral coherence and the skewing of spectroscopic measurements. Here, we study HHG in epitaxial ZnO thin films grown on Al2O3substrates using atomic layer deposition. We find that the HHG emission consists of narrow spectral peaks, in contrast to those seen in bulk, and that the dependence of the harmonic yield on the film thickness differs for above-gap and below-gap harmonics, which can be understood from analytical models based on the linear and nonlinear response of the medium. The measured harmonic spectra depend qualitatively on the preparation of the films, with as-grown films generating even harmonic orders, which are absent in annealed films. The results are interpreted using transmission electron microscopy measurements, which indicate different morphologies for the as-grown and annealed films.more » « less
-
Abstract Motivated by the profound impact of laser technology on science, arising from an increase in focused light intensity by seven orders of magnitude and flashes so short electron motion is visible, this roadmap outlines the paths forward in laser technology to enable the next generation of science and applications. Despite remarkable progress, the field confronts challenges in developing compact, high-power sources, enhancing scalability and efficiency, and ensuring safety standards. Future research endeavors aim to revolutionize laser power, energy, repetition rate and precision control; to transform mid-infrared sources; to revolutionize approaches to field control and frequency conversion. These require reinvention of materials and optics to enable intense laser science and interdisciplinary collaboration. The roadmap underscores the dynamic nature of laser technology and its potential to address global challenges, propelling progress and fostering sustainable development. Ultimately, advancements in laser technology hold promise to revolutionize myriad applications, heralding a future defined by innovation, efficiency, and sustainability.more » « less
-
Abstract Recently, nodal line semimetals based on ZrSiS-family have garnered massive research interests contributing numerous experimental and theoretical works. Despite being the most studied nodal-line semimetal, a clear understanding of the transient state relaxation dynamics and the underlying mechanism in ZrSiS is lacking. Using time- and angle-resolved photoemission spectroscopy, we study the ultrafast relaxation dynamics in ZrSiS and reveal a unique relaxation in the bulk nodal-line state which is well-captured by a simple model based on optical and acoustic phonon cooling. Our model predicts linear decay processes for both optical and acoustic phonon relaxations with optical cooling dominant at higher temperatures. Our results reveal different decay mechanisms for the bulk and surface states and pave a way to understand the mechanism of conduction in this material.more » « less
An official website of the United States government
